Image analysis formats

onImageForAnalysis is triggered every time a new image is available for analysis. AnalysisImage is an abstract class and its implementation will depend on the platform and on the AnalysisConfig you have defined. You can use the when() helper function to decide what to do depending on the format:

final Widget? result = img.when(jpeg: (JpegImage image) {
    return handleJpeg(image);
}, yuv420: (Yuv420Image image) {
    return handleYuv420( image);
}, nv21: (Nv21Image image) {
    return handleNv21(image);
}, bgra8888: (Bgra8888Image image) {
    return handleBgra8888(image);
})

In the above example, handle methods are expected to return a Widget. You can ommit any of the format if you'd like (that's why result might be null).

Displaying an AnalysisImage

An Image widget can be used to display an AnalysisImage but you may need to convert it to a format that can be displayed first.

AnalysisImage conversion

The easiest conversion to display an AnalysisImage is to convert it to JPEG.

Let's check how to convert each `AnalysisImage implementation.

JpegImage

This implementation is already in JPEG, so you can simply display it without additional conversion:

final Widget? result = img.when(jpeg: (JpegImage image) {
    return Image.memory(image.bytes);
})

However, image analysis is often done on other image formats such as NV21 so you will probably end up using an other format.

YUV_420_888 and NV21

You might succeed in converting these formats in pure dart, but performances will probably not be good and it's not easy to do. Instead, use toJpeg() on Yuv420Image and Nv21Image instances to convert them to JpegImage. This method will make the conversion on the native side so it returns a Future.

Example:

final Widget? result = img.when(nv21: (Nv21Image image) {
    return FutureBuilderr<JpegImage>(
        future: image.toJpeg(),
        builder: (BuildContext context, AsyncSnapshot<JpegImage> snapshot) {
            if (snapshot.hasData) {
                return Image.memory(snapshot.data!.bytes);
            } else {
                return SizedBox();
            }
        },
    );
});

Bgra8888Image

The iOS format is rather simple to convert in dart with the use of the image package:

Uint8List convertToJpeg(Bgra8888Image image){
    return imglib.encodeJpg(
        imglib.Image.fromBytes(
            width: image.width,
            height: image.height,
            bytes: image.planes[0].bytes.buffer,
            order: imglib.ChannelOrder.bgra,
        ),
        quality: 100,
    );
}

An alternative using native conversion is to simply call toJpeg() on the Bgra8888Image instance. It might be better in terms of performances but it returns a Future, like Nv21Image.toJpeg() and Yuv420Image.toJpeg().

Example usage

image package provides a variety of effects that you can apply on an image.

In the below example, we will apply a billboard effect to each analysis image and display the result. Since we display images one after the other, it will look like a camera preview with a filter applied on it:

Billboard effect

Let's start with a basic CamerAwesome setup:

class CameraPage extends StatefulWidget {
  const CameraPage({super.key});

  @override
  State<CameraPage> createState() => _CameraPageState();
}

class _CameraPageState extends State<CameraPage> {
  // 1.
  final _imageStreamController = StreamController<AnalysisImage>();

  @override
  void dispose() {
    _imageStreamController.close();
    super.dispose();
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      // 2.
      body: CameraAwesomeBuilder.analysisOnly(
        sensorConfig: SensorConfig.single(
          sensor: Sensor.position(SensorPosition.front),
          aspectRatio: CameraAspectRatios.ratio_1_1,
        ),
        // 3.
        onImageForAnalysis: (img) async => _imageStreamController.add(img),
        imageAnalysisConfig: AnalysisConfig(
          androidOptions: const AndroidAnalysisOptions.yuv420(
            width: 150,
          ),
          maxFramesPerSecond: 30,
        ),
        builder: (state, previewSize, previewRect) {
          // 4.
          return CameraPreviewDisplayer(
            analysisImageStream: _imageStreamController.stream,
          );
        },
      ),
    );
  }
}

This part is quite simple but let's explain it a bit:

  1. We create a StreamController to send each AnalysisImage to a widget that will display them.
  2. The CameraAwesomeBuilder.analysisOnly builder is the most appropriate since the image analysis itself will be used to display a preview of the camera. We don't need an other camera preview.
  3. onImageForAnalysis is called every time a new image is available for analysis. This example simply adds the image to the stream.
  4. CameraPreviewDisplayer is where we'll handle the stream of images (given as argument).

Now let's create the CameraPreviewDisplayer widget:

class CameraPreviewDisplayer extends StatefulWidget {
  final Stream<AnalysisImage> analysisImageStream;

  const CameraPreviewDisplayer({
    super.key,
    required this.analysisImageStream,
  });

  @override
  State<CameraPreviewDisplayer> createState() => _CameraPreviewDisplayerState();
}

class _CameraPreviewDisplayerState extends State<CameraPreviewDisplayer> {
  // 1.
  Uint8List? _cachedJpeg;

  @override
  Widget build(BuildContext context) {
    return Center(
      // 2.
      child: StreamBuilder<AnalysisImage>(
        stream: widget.analysisImageStream,
        builder: (_, snapshot) {
          if (!snapshot.hasData) {
            return const SizedBox.shrink();
          }

          final img = snapshot.requireData;
          // 3.
          return img.when(jpeg: (image) {
            // 4.
            _cachedJpeg = _applyFilterOnBytes(image.bytes);

            return ImageAnalysisPreview(
              currentJpeg: _cachedJpeg!,
              width: image.width.toDouble(),
              height: image.height.toDouble(),
            );
          }, yuv420: (Yuv420Image image) {
            // 5.
            return FutureBuilder<JpegImage>(
                future: image.toJpeg(),
                builder: (_, snapshot) {
                  if (snapshot.data == null && _cachedJpeg == null) {
                    return const Center(
                      child: CircularProgressIndicator(),
                    );
                  } else if (snapshot.data != null) {
                    // 6.
                    _cachedJpeg = _applyFilterOnBytes(
                      snapshot.data!.bytes,
                    );
                  }
                  return ImageAnalysisPreview(
                    currentJpeg: _cachedJpeg!,
                    width: image.width.toDouble(),
                    height: image.height.toDouble(),
                  );
                });
          }, nv21: (Nv21Image image) {
            // 7.
            return FutureBuilder<JpegImage>(
                future: image.toJpeg(),
                builder: (_, snapshot) {
                  if (snapshot.data == null && _cachedJpeg == null) {
                    return const Center(
                      child: CircularProgressIndicator(),
                    );
                  } else if (snapshot.data != null) {
                    _cachedJpeg = _applyFilterOnBytes(
                      snapshot.data!.bytes,
                    );
                  }
                  return ImageAnalysisPreview(
                    currentJpeg: _cachedJpeg!,
                    width: image.width.toDouble(),
                    height: image.height.toDouble(),
                  );
                });
          }, bgra8888: (Bgra8888Image image) {
            // 8.
            _cachedJpeg = _applyFilterOnImage(
              imglib.Image.fromBytes(
                width: image.width,
                height: image.height,
                bytes: image.planes[0].bytes.buffer,
                order: imglib.ChannelOrder.bgra,
              ),
            );

            return ImageAnalysisPreview(
              currentJpeg: _cachedJpeg!,
              width: image.width.toDouble(),
              height: image.height.toDouble(),
            );
            // We handle all formats so we're sure there won't be a null value
          })!;
        },
      ),
    );
  }

  Uint8List _applyFilterOnBytes(Uint8List bytes) {
    return _applyFilterOnImage(imglib.decodeJpg(bytes)!);
  }

  Uint8List _applyFilterOnImage(imglib.Image image) {
    // 9.
    return imglib.encodeJpg(
      imglib.billboard(image),
      quality: 70,
    );
  }
}

There was a bit more code here! Let's explain it:

  1. The last image treated is saved in _cachedJpeg. It works as a kind of cache: if one conversion is still pending, we show the last one instead.
  2. Since we have a stream of images to display, we use a StreamBuilder.
  3. An AnalysisImage can have multiple formats. The when method let use handle all of them.
  4. If the image is already in JPEG, we can apply the filter directly on the bytes.
  5. If the image is in yuv420 format, we need to convert it to jpeg first. We use the toJpeg method to do so. This method is asynchronous so we need to use a FutureBuilder to wait for the result.
  6. Once the AsyncSnapshot has data, apply the filter on it and save the result in _cachedJpeg.
  7. The Nv21Image handler works exactly the same as Yuv420Image.
  8. If the image is in bgra8888 format, we can convert it easily in dart and apply the filter on the result.
  9. Use the image librare (aliased as "imglib" here) to apply a billboard effect on the image.

Finally, let's create the ImageAnalysisPreview widget:

class ImageAnalysisPreview extends StatelessWidget {
  final double width;
  final double height;
  final Uint8List currentJpeg;

  const ImageAnalysisPreview({
    super.key,
    required this.currentJpeg,
    required this.width,
    required this.height,
  });

  @override
  Widget build(BuildContext context) {
    return Container(
      color: Colors.black,
      child: Transform.scale(
        // 1.
        scaleX: -1,
        child: Transform.rotate(
          // 2.
          angle: 3 / 2 * pi,
          child: SizedBox.expand(
            child: Image.memory(
              currentJpeg,
              // 3.
              gaplessPlayback: true,
              fit: BoxFit.cover,
            ),
          ),
        ),
      ),
    );
  }
}

Let's break it down:

  1. On Android, image analysis for the front camera is not flipped (like in the preview). Flip it back with Transform.scale.
  2. Rotate the image to have the same orientation as the camera preview.
  3. gaplessPlayback avoids flickering when the image is updated.

Full source code is available in example/analysis_image_filter.dart. A more elaborate example where you can choose which filter to apply is also available in example/analysis_image_filter_picker.dart